
PGO: a Parallel Computing Platform for

Global Optimization Based on Genetic

Algorithm

Kejing He a, Li Zheng b,∗, Shoubin Dong a, Liqun Tang c,
Jianfeng Wu d, Chunmiao Zheng e

aGuangdong Key Laboratory of Computer Network, South China University of
Technology, Guangzhou, China

bCenter for Agricultural Resources Research, IGDB, Chinese Academy of
Sciences, Shijiazhuang, China

cCollege of Traffic and Communications, South China University of Technology,
Guangzhou, China

dDepartment of Earth Sciences, Nanjing University, Nanjing, China
eDepartment of Geological Sciences, University of Alabama, Tuscaloosa, AL,

United States

Abstract

This paper presents the design, architecture and implementation of a general par-
allel computing platform, termed PGO, based on the Genetic Algorithm for global
optimization. PGO provides an efficient and easy-to-use framework for paralleliz-
ing the global optimization procedure for general scientific modeling and simulation
processes. Along with a core optimization kernel built on a Genetic Algorithm, PGO
also includes a general input generator and an output extractor that can facilitate
its easy integration with various scientific computing tasks. In this paper, we demon-
strate the efficiency and versatility of PGO with two different applications: (1) the
parallelization of a large scale parameter estimation problem associated with mod-
eling water flow in a heterogeneous deep vadose zone; (2) the parallelization of a
complex simulation-optimization procedure for searching for an optimal groundwa-
ter remediation design. PGO is developed as an open source code, and is independent
of the computer operating system. It has been tested in a heterogeneous computing
environment consisting of Solaris 9, Fedora Core 2 Linux, and Microsoft Windows
machines, and is freely available for download from http://grid.scut.edu.cn/PGO/.

Key words: parallel computing, high performance computation platform, global
optimization, the Genetic Algorithm

Preprint submitted to Computers & Geosciences 31 August 2006

1 Introduction

In scientific and engineering computing, optimization is one of the most fre-
quently encountered computational problems. Optimization refers to the pro-
cess of identifying values for unknown model parameters or control variables
so that the given objective function can achieve its optimum. When the ob-
jective function is smooth and unimodal, local gradient-based optimization
techniques (such as Newton and Quasi-Newton methods) are effective. Local
gradient-based optimization methods have been widely used in many popular
tools for the optimization process. For example, PEST (Doherty, 2004) uses a
nonlinear optimization technique known as the Gauss-Marquardt-Levenberg
method, and UCODE (Poeter and Hill, 1998) solves optimization problem by
minimizing a weighted least squares objective function with respect to the
unknown parameter values using a modified Gauss-Newton method. However,
when objective function is discontinuous or characterized by many local op-
tima, local search procedures will be less effective and optimization results
will be very sensitive to the choices of initial values.

Many researchers have successfully applied global optimization methods, such
as the Genetic Algorithm (GA), rather than local gradient-based optimization
techniques to geoscientific computational problems. The Genetic Algorithm
is an intelligent random search technique based on the theory of Darwinian
evolution. It was first introduced by Holland (1975), and was later extended
by De Jong (1985) and Goldberg (1989). In geoscientific computation, the
GA has found applications in calibrating conceptual rainfall-runoff models
(Wang, 1991), solving a multiple objective groundwater pollution containment
problem (Ritzel et al., 1994), conducting the inverse modeling in hydrogeol-
ogy (Karpouzos et al., 2001; Prasad and Rastogi, 2001), and optimizing the
groundwater remediation and contamination control systems (Erickson et al.,
2002; Bayer and Finkel, 2004).

However, GA tends to converge very slowly when being applied to a highly
nonlinear external model with many parameters and subsequently an enor-
mous search space. It may take weeks even months to accomplish an optimiza-
tion task. Many have explored parallelization for speeding up GA computa-
tion. There are mainly three kinds of parallel Genetic Algorithms (PGAs): (1)
the global single-population master-slave GAs; (2) the multiple-deme coarse-
grained GAs; (3) the fine-grained (cellular) GAs. Detailed descriptions and
analyses of various PGAs are given by Cantú-Paz (2000). Xu et al. (2002)
used a fine-grained GA for the VLSI implementation of real-time GPS atti-

∗ Corresponding author. Tel.: +1-505-665-5745; fax: +1-505-665-5757.
Email address: lzheng@tmail.lanl.gov (Li Zheng, currently a visiting scientist at the
Theoretical Division of the Los Alamos National Laboratory)

2

tude determination systems. Spataro et al. (2004) employed a master-slave GA
to evolve a two dimensional cellular automata model for lava flow simulation.
Cheng et al. (2005) used a hybrid method that combines coarse-grained GA
(ring topology) with a fuzzy optimal model to calibrate rainfall-runoff models.

Despite many applications of GAs and PGAs in scientific research, their rou-
tine adoption for general modeling and simulations remains a non-trivial task.
First, the modelers need interfaces for data exchange between the simulation
model and the chosen GA tool. These include mapping model’s unknown pa-
rameters/variables to GA’s abstract chromosomes, generating model’s input
files, extracting results from model’s output, and evaluating fitness. Second,
while the design of GA is intrinsically suitable for the parallelization of its
execution, the integration of a general model with a parallel computing envi-
ronmental is however far from being straight forward. Modelers need to cope
with the message transferring between different machines and the distributed
data storage/access during optimization progress. When a complex application
requires more than a single homogeneous cluster, the topologies and message
transferring between heterogeneous clusters will be a complex job even for
computer scientists.

This paper aims at presenting a general and easy-to-use parallel computing
platform, termed PGO, based on the Genetic Algorithm for facilitating the
global optimization in routine scientific computation. Along with a core op-
timization kernel built on GA and a parallel computing technique, PGO also
includes a general input generator and an output extractor that can facili-
tate its easy integration with external models. The algorithm implemented in
PGO belongs to the master-slave type PGA approach mentioned before. Using
a loose-coupling approach to control and communicate with external models,
PGO is highly flexible and scalable. PGO is programmed in Perl script lan-
guage and developed as an open source code. It is independent of the computer
operating system and has been tested in a heterogeneous computing environ-
ment consisting of Solaris 9, Fedora Core 2 Linux, and Microsoft Windows
machines. PGO and its user manual are in public domain and available for
download from http://grid.scut.edu.cn/PGO/.

This paper is organized as follows. Following the introduction in section 1, sec-
tion 2 explains the theory of optimization, Genetic Algorithm, parallel tech-
nique, and their integration. Section 3 describes the architecture and config-
uration of PGO. In section 4, PGO is applied to (1) the parallelization of a
large scale parameter estimation problem associated with modeling water flow
in a heterogeneous deep vadose zone; and (2) the parallelization of a complex
simulation-optimization procedure for searching for an optimal groundwater
remediation design. Finally, some conclusions and discussions are made in
section 5.

3

2 Optimization, Genetic Algorithm, and Parallel Technique

2.1 Problem Statement

Suppose there exists a general parametric mathematical model Ω with J in-
puts, K observable outputs and N variable parameters. The output ~y of Ω
is:

~y = Ω(~x, ~p) ~x ∈ RJ , ~y ∈ RK , ~p ∈ RN (1)

Then, the goal of optimization is to find suitable value ~p∗ so that the objective
function F : RK → R can achieve its optimum.

2.2 Nomenclature

N population size, number of chromosomes in each generation
Pe elite probability
Pc crossover probability
Pm mutation probability
Lt number of generations tolerated for no improvement on the objective before

the GA is terminated.

2.3 The Genetic Algorithm used in PGO

When implementing the GA, each parameter pi is represented by a real num-
ber called a gene. Genes are cascaded to form a longer string ~p named a
chromosome. Chromosomes are used to represent the possible combinations of
unknown parameter values. A collection of N chromosomes is called a popula-
tion. In each generation, let ei,j be the fitness of the jth chromosome at the ith
generation, the GA would search for the optimal fitness ei

opt = Optimal(ei,j)
over the entire space of parameters and attempts to drive ei

opt to optimum over
the succeeding generations. Unlike the local gradient based methods, the Ge-
netic Algorithm requires no calculation of the gradient and is not susceptible
to the trapping of local minima.

Using the Genetic Algorithm for highly nonlinear optimization often requires
considerable computational time, especially when a large number of unknown
parameters are involved. The computational time required by the Genetic

4

Algorithm optimization can be roughly calculated by

Time = G×N × T (2)

where G is the number of generations for achieving the convergence, N is the
population size, and T is the time that a single run of the application model
will take. For example, in the case of modeling water flow in deep vadose zone
presented in section 4.1, the application of a standard GA will have a G of
600, N of 800 and T of 10 minutes, which amounts to a computational time of
9 years in total for achieving the optimal solutions. Such a computational cost
is unacceptable in practice. Fortunately, the operations on individual chromo-
some are independent from each other within each generation, which makes
the GA is inherently suitable for parallelization. In current study, we employ
the parallel technique to distribute multiple chromosomes to parallel proces-
sors in order to speed up the computation. Meanwhile, we also adopt an elite
GA which will allow the best chromosomes to survive into the next generation
even though their probability being selected is small; The GA scheme used in
PGO is illustrated in Fig. 1. Generally, elite selection reduces the number of
generations and improves algorithm performance (De Jong, 1975; Goldberg,
1989). Further, we provide an interface in PGO for users to define their own

Step 1: Let Gt be the maximal number of generations allowed. En-
code the parameters to be estimated and refer them as the chromo-
somes. Set i = 0, and m = 0.

Step 2: Initialize N chromosomes, let i = 1 and m = 0.
Step 3: Computational nodes decode the chromosomes and calculate

the objective ei,j for every jth chromosome in the ith generation.
Let ei

opt = Optimalj(ei,j).

Step 4: If ei
opt = ei−1

opt , m = m + 1; otherwise, m = 0.
Step 5: If m = Lt or i = Gt, terminate the algorithm; otherwise,

pass Pe ·N parents into next generation, mate N parents and gen-
erate N −Pe ·N children, invoke mutation along with the crossover
procedure.

Step 6: Set i = i + 1, go to step 3.

Fig. 1. The GA scheme used in PGO

decoding module based on existing knowledge.

Theoretically speaking, any real numbers in the allowed range could be eligible
for being chosen as the parameter values. In a specific application, however,
practitioners can specify a much narrower range for each parameter based
on experiences or knowledge. PGO provides an interface to let users define
their own decoding module (Fig. 2 and section 3.1). The decoding module is
a function to map one space to another. For example, if the parameter values

5

are in RN space, but the most reasonable combination of these parameter
values can be classed into some categories, users can employ this interface
to map category indicators to actual parameter values, and the search space
will then decrease from RN to N. The decoding module can be configured in
the configuration file (section 3.3). In the Genetic Algorithm search, a smaller
search space will lead to a smaller population size and quicker convergence.

In the current version of PGO, we implement two kinds of selection algorithms.
They are the roulette wheel and the binary tournament. Users can choose
either one of them through the configuration file (section 3.3). We plan to
include more selection algorithms (e.g. ranking) in the future version of PGO.

2.4 Coupling with Parallel Techniques

Since executing the decoding operation and evaluating the fitnesses of chromo-
somes in the same generation are independent of each other, we can improve
the computational efficiency significantly by carrying out these operations
(decoding and evaluation) on each chromosome in parallel rather than se-
quentially. In PGO, the parallel computing framework is organized as a global
master-slave system (as categorized in PGA) and uses a central database man-
agement system (DBMS) for storing all the data during optimization progress.
The server distributes chromosomes to computational nodes which are re-
sponsible for decoding the chromosome into real values, running the external
application model, calculating fitness and returning fitness to the server.

As communication overhead can be neglected among independent model runs,
a near-linear speedup with the numbers of processors used can be achieved.
Although the MPI (Message Passing Interface) (Karonis et al., 2003) has been
a popular choice in many parallel computing applications, we choose the cen-
tral DBMS approach in PGO due to the following considerations. First, many
modelers may not have access to Unix-like servers, and have to run their
optimization jobs on windows-based PCs. Using MPI on windows may com-
plicate the installation, configuration, and the use. Second, the central DBMS
approach is capable of handling data exchange between master and slave ma-
chines. The well-organized data in DBMS are also valuable for further devel-
opment. For example, the PGO with DBMS data structure is very suitable
for integrating with a wider Grid environment to enable the service-oriented
Grid computing (Foster and Kesselman, 1999). The Grid-enabled version of
PGO is in fact currently under development in our laboratory. In the following
sections, we will explain in details the architecture and configuration of this
parallel computing platform.

6

3 The Software

3.1 Architecture

PGO consists of two parts: server module and computational module as illus-
trated in Fig. 2. The server module is mainly the optimization kernel which
controls the evolution of whole optimization progress. The computational
module runs on many computational nodes, each of which gets a chromosome
from the server and decodes the abstract chromosome into real parameter val-
ues, and store them into template files so as to generate input files for external
application model. When all the input files are ready, the computational mod-
ule will run the external application model, extract the results from the output
files produced by the model, evaluate the fitness and return the fitness to the
server for further evolution.

Application
Model

Objetive
Evaluation

Input
Generation

Optimization
Kernel

Decoding

Parameter values

Chromosome

Server
Module

Computat ional
Module

Input
Files

Output
Files

Template
Fi les

O bser va tions

Fig. 2. Architecture of PGO. The server module controls the optimization progress;
the computation module runs the external application model, returns the fitness to
the server module for further evolution.

3.2 Integration

Since PGO has provided most components for a general optimization task,
integrating PGO with a specific geoscientific modeling is as easy as installing
and configurating a regular software. The steps are:

Step 1: Install prerequisite softwares, including Perl and the MySQL DBMS.
PGO package also provides a script that make the installation of these
softwares a very smooth process.

7

Step 2: Configurate PGO, edit the configuration file to suit your particular
case. In section 3.3, we will explain the configuration process in detail.

Step 3: Copy the computational module to every computational nodes. Start
the server module on the server, and start the computational module on each
computational node.

3.3 Configuration

To facilitate the friendly-use of PGO, we provide a flexible XML file named
config.xml to store all the configurations. Config.xml contains settings for the
Genetic Algorithm employed (e.g. population size, crossover probability, and
mutation probability etc.), the lower bound, upper bound and the precision of
model parameters, rules for making model input files, extracting observations
from model output files and evaluating the objective function. The graphical
view of the XML schema used in PGO is illustrated in Fig. 3.

Fig. 3. The graphical view of the XML schema used for configuration

8

4 Applications

4.1 A large scale parameter estimation for modeling water flow in a hetero-
geneous deep vadose zone

The first application involves a simulation based on the SWAP model (Kroes
and van Dam, 2003; Kendy et al., 2003) of the dynamic interactions between
soil, water, atmosphere and plant in a deep vadose zone of a typical area in
North China Plain, where years of intensive ground water pumping for irriga-
tion have caused the rapid decline of ground water table. The one-dimensional
SWAP model employs the Richard’s equation, which combines Darcy’s law
and the continuity equation, to simulate the water flow process in the deep
vadose zone. Based on the field observation, the soil column under study is
divided into 25 layers with each layer having 7 unknown soil hydraulic prop-
erty parameters as defined in the Van Genuchten relationship and Mualem’s
K(θ) function (Kroes and van Dam, 2003). We will then need to identify
the 175 unknown parameters in order to perform the simulation. As we have
explained earlier, the search for the best values for such a large number of
parameters will be prohibitively expensive. Here we will apply PGO to this
task to demonstrate the efficiency and utility of PGO.

Field data used for model inputs and calibration were collected at Luancheng
Agricultural Eco-system Experimental Station of Chinese Academy of Sci-
ences, Luancheng County, Hebei Province, from October 1998 to September
2001. The model input data include meteorological records, crop properties,
and soil classifications. The data used for model calibration include the soil
moisture contents as well as the ground water table elevations at the same
sampling sites. The soil moisture contents were measured by neutron probes
placed at nine depth intervals between 0 and 180 cm below ground surface
every five days. Ground water table elevations were recorded by water level
loggers at a same time interval. Detailed descriptions of experimental set up
and procedures can be found in Liu et al. (2002).

The main input of SWAP is a *.swp file, which contains general section, crop
section, soil water section etc. We assume that in this simulation all other
parameters are fixed and known except the 175 soil hydraulic parameters con-
tained in soil water section to be estimated. When conducting the parameter
estimation by PGO, each computational node gets a chromosome from the
server, decodes the chromosome into 175 soil hydraulic parameters and writes
these values in a *.swp file. PGO has an interface available for users to specify
the range of each parameter if desired. Then, it will run the SWAP model
to produce a series of output files including a *.wba file for groundwater level
data and a *.vap file for soil moisture content distribution. The computational

9

node will then extract values at the observation points from the *.wba file and
the *.vap file, compare simulation results to corresponding measured values
and return the fitness to the server. When the server has distributed all the
chromosomes in current generation to all available computational nodes to
accomplish all associated computations, the optimization kernel of PGO will
breed next generation based on the scheme presented in Fig. 1. Iterating pre-
vious steps, PGO will drive fitness to maximum and obtain the optimal or
near optimal parameter values. In current application, we set the maximal
number of generations allowed (Gt) to 600. We also let Lt (section 2.2) equal
to Gt so as to disable the termination of GA due to no improvement and
allow the observation of entire optimization process. We carry out the param-
eter estimation task in 82 heterogeneous computational nodes with total 208
processors. With a population size (N) of 800 and the single run time of the
application model (T) being about 10 minutes, the optimization process for
600 generations lasts half a month. Fig. 4 gives a sample comparison between
the measured and model calculated soil moisture changes at the depth of 15cm
below ground surface. Fig. 5 illustrates the convergence of RMSEs (Root Mean
Square Errors) of soil moisture content and groundwater level during the pa-
rameter estimation process. As shown in Fig. 5, most of the convergence was
achieved within 100 generations and there isn’t any improvement in RMSE
beyond 300 generations. So the algorithm in fact only takes about one week
to converge. Of the two calibration criteria uses, the fitness between measured
and model calculated soil moisture content dominated the optimization pro-
cess. Considering the physics of the system under study, the ground water
table fluctuation is much less sensitive than the soil moisture contents to the
changing values of unknown soil hydraulic property parameters. Thus the wa-
ter table fluctuation is much easier to match than soil water content. Over all,
the RMSE between measured and model calculated water storage within top
180cm (the summation of water content over the 9 observation intervals) was
4.9cm (percentage error: 12.5%). The RMSE between measured and model
calculated groundwater level was 1.44m (a pecentage error of 6.0%).

In the simulation of water flow in vadose zone, one common approach is to
group the soil profile layers into a few soil types thus to dramatically reduce
the number of soil hydraulic parameters needed to be estimated. In our ap-
plication we preserved a large number of soil layers and assumed each layer is
associated with a different set of unknown parameters. This approach main-
tains a higher degree of freedom and provides a more realistic representation
for field sites with high heterogeneity. The use of PGO enables us to esti-
mate exceedingly large number of unknown parameters in the search space.
Without the adoption of distributed computing resources, this parameter es-
timation job as it is formulated may take the conventional GA up to 9 years
to accomplish.

For comparison, we also applied a local gradient based search method, PEST

10

(Doherty, 2004), to this parameter estimation problem. The search process
of PEST would stop quickly after it was started and couldn’t move forward.
Different stopping points were reached for different choices of initial values.
Since there are 175 unknown parameters interacting with each other in a
highly non-linear way, there exist a large number of local optima in the search
space. It appeared that PEST was trapped in those local optima and failed to
progress further.

Fig. 4. Comparison between measured and model calculated soil moisture content
at the depth of 15cm

4.2 Optimization of remediation system design

In our second application, we use PGO to implement a serial simulation-
optimization code called ’Modular Groundwater Optimizer (MGO)’ by Zheng
and Wang (2003) to parallel environment. The MGO code couples the widely
used groundwater flow simulator MODFLOW (McDonald and Harbaugh, 1988)
and solute transport simulator MT3DMS (Zheng and Wang, 1999) with a gen-
eral optimization package for formulating the most cost-effective groundwater
remediation strategies under various physical, environmental and budgetary
constraints. As PGO has been designed to be an easy-to-use general frame-
work for parallel optimization, integrating PGO with MGO is simple and
straightforward. Basically, the MGO code is modified to play the role of the
computational module residing and running on individual nodes. Each run of
MGO returns to the server a single objective function value associated with

11

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
5 %

1 0 %

1 5 %

2 0 %

2 5 %

3 0 %

3 5 %

4 0 %

RM
SE

G e n e r a t i o n N u m b e r

 S o i l M o i s t u r e C o n t e n t
 G r o u n d w a t e r L e v e l
 A v e r a g e

Fig. 5. Convergence of RMSEs in percentage during optimization process

each chromosome. The optimization algorithms in the original MGO code are
no longer used; instead, the parallel GA kernel residing and running on the
server carries out the optimization tasks.

We apply the parallelized MGO code to the optimization of a groundwater re-
mediation system at the CS-10 site located within the Massachusetts Military
Reservation (MMR) in Cape Cod, Massachusetts (Zheng and Wang, 2002).
TCE is the primary contaminant at the CS-10 site. Extensive field sampling
has led to the delineation of a TCE plume approximately 5 km long, 2 km
wide, and up to approximately 43 m thick. The groundwater remediation sys-
tem for the CS-10 site involved nine pumping wells intended to contain and
eventually remove the TCE plume. The nine pumping wells must not exceed
a total extraction rate approximately 10 m3/min, the design capacity for the
on-site treatment plant. After the extracted water was treated at the on-site
treatment plant, it would be re-injected into the infiltration trenches on the
downstream edges of the plume. More detailed information on the case study
can be found in Zheng and Wang (2002).

Using the MMR example as a demonstration for the new parallel MGO for
comparison with the original serial MGO, we optimize the pumping rates of
the nine wells to achieve the maximum amount of contaminant mass removal
by the nine managed wells and the well fence along Sandwich Road by the end
of the project horizon while satisfying all the constraints discussed in Zheng
and Wang (2002). In this application, the maximal number of generations al-
lowed (Gt) is 50, Lt is 20 (defined in section 2.2), the population size (N)

12

is 200 and the run time (T) is about 25 minutes for running both flow and
transport simulations on a single processor. We carry out the optimization in
36 heterogeneous computational nodes, with 72 processors in total. The opti-
mization takes 52 hours to converge. The maximum amount of contaminant
mass removal by the nine managed wells and the well fence along Sandwich
Road is 3864 kg. In the original case, the formulation used is to maximize
the mass removal by the managed wells only, and the result is 2864kg (Zheng
and Wang, 2002). Adopting PGO, the reduction in computing time is propor-
tional to the number of processors employed. Fig. 6 illustrates the evolution
of objective function (contaminant mass removed) with generations.

0 1 0 2 0 3 0 4 0 5 0

3 7 8 0

3 8 0 0

3 8 2 0

3 8 4 0

3 8 6 0

3 8 8 0

Ma
ss

 (k
g)

G e n e r a t i o n N u m b e r

Fig. 6. Relationship between contaminant mass removal and generation number

5 Conclusions

This paper has presented the design, architecture and implementation of a
general parallel framework (PGO) for GA-based global optimization. The de-
sign and architecture of PGO are highly flexible and scalable. The parallel
optimization kernel is built on a master-slave type GA approach. Along with
this kernel, we have constructed multiple interfaces to facilitate the easy in-
tegration of PGO with existing simulation models. These interfaces include
input file generator, output extractor, fitness evaluator, and parameter bound
settings etc. To simplify the use of PGO, we have employed a flexible XML file
to store all the project settings and configurations. Furthermore, we adopted

13

the DBMS data structure, which facilitates the use of PGO in heterogeneous
computing environment, including Unix, Linux and Window based computers.
The use of DBMS data structure is also very suitable for integrating with a
wider Grid environment to enable the Service-Oriented Grid computing and
gain more powerful computer resources. PGO is programmed in Perl script
language and developed as an open source code. Users may choose to ex-
pand and further develop this platform to meet their own requirements. The
executable files, source codes, and the user manual are freely available for
download from http://grid.scut.edu.cn/PGO/.

In this paper, we applied PGO to two case studies to illustrate the effective-
ness and efficiency of PGO. In the first application case, we demonstrated that
PGO could be easily used to control and run the external simulation model
to obtain optimal parameter estimations without performing any recoding on
the existing water flow model. The loose-coupling between PGO and external
models can be easily achieved via the input generation interface and output
extraction interface of PGO. In the second application, we showed that PGO
can be used to easily parallelize an existing optimization code (MGO). With a
few small modifications, PGO would take over the place of the GA optimiza-
tion module within MGO, and be able to run the unchanged external ground
water flow and transport model in parallel to optimize the remediation design.
With the loose-coupling approach, the communication time between PGO and
external models is often negligible as compared to the time required to run
external models. The progress of entire optimization process after employing
PGO would achieve almost linear speedup.

In future, we are planning to implement more selection methods (e.g. ranking)
to give users more choices. The Grid-enabled version of PGO is also a focus of
our further development. A paper on the preliminary results of Grid-enabled
PGO is available in our download site. In addition to the global master-slave
PGA adopted here, we will also explore the possibilities of including other
kinds of PGAs, such as coarse-grained GA or fine-grained GA into the PGO
platform.

Acknowledgements

This research was jointly funded by the Innovation Knowledge Project of
Chinese Academy of Sciences (project No. KZCX3-SW-428), the ChinaGrid
Project (project No. CG2003-GA002 and CG2003-GA005), and Natural Sci-
ence Foundation of China (NSFC) (grant No. 40472130). Li Zheng’s research
was partially supported by the Los Alamos National Laboratory LDRD Project
”High-Resolution Physically-Based Model of Semi-Arid River Basin Hydrol-
ogy” and in collaboration with SAHRA Program of the National Science Foun-

14

dation under Agreement No. EAR-9876800, and by the US Department of En-
ergy Office of Science’s Advanced Scientific Computing Research (ASCR) Ap-
plied Mathematical Research program. We greatly appreciate the Luancheng
Agricultural Eco-system Experimental Station of Chinese Academy of Sci-
ences for making available the field data used in this study. Also many thanks
to Joop Kroes (Alterra, Wageningen University and Research Centre) for sup-
porting the source code of TTUTIL library (van Kraalingen and Rappoldt,
2000).

References

Bayer, P., Finkel, M., 2004. Evolutionary algorithms for the optimization of
advective control of contaminated aquifer zones. Water Resources Research
40 (6), w06506, doi:10.1029/2003WR002675.

Cantú-Paz, E., 2000. Efficient and Accurate Parallel Genetic Algorithms.
Kluwer Academic Publishers, Norwell, MA, USA.

Cheng, C., Wu, X., Chau, K. W., 2005. Multiple criteria rainfall-runoff model
calibration using a parallel genetic algorithm in a cluster of computers.
Hydrological sciences journal 50 (6), 1069 – 1087.

De Jong, K. A., 1975. An analysis of the behavior of a class of genetic adaptive
systems. Ph.D. thesis, University of Michigan.

De Jong, K. A., 1985. Genetic algorithms: A 10 year perspective. In: Grefen-
stette, J. J. (Ed.), ICGA. Lawrence Erlbaum Associates, pp. 169–177.

Doherty, J., 2004. PEST: Model-Independent Parameter Estimation. Water-
mark Numerical Computing, 5th Edition.

Erickson, M., Mayer, A., Horn, J., 2002. Multi-objective optimal design of
groundwater remediation systems: application of the niched Pareto genetic
algorithm (NPGA). Advances in Water Resources 25 (1), 51–65.

Foster, I., Kesselman, C. (Eds.), 1999. The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, Reading, Mass.

Holland, J., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

Karonis, N. T., Toonen, B., Foster, I., 2003. MPICH-G2: A grid-enabled im-
plementation of the message passing interface. Journal of Parallel and Dis-
tributed Computing 63 (5), 551–563.

Karpouzos, D. K., Delay, F., Katsifarakis, K. L., de Marsily, G., 2001. A mul-
tipopulation genetic algorithm to solve the inverse problem in hydrogeology.
Water Resources Research 37 (9), 2291–2302.

Kendy, E., Gérard-Marchant, P., Walter, M. T., Zhang, Y., Liu, C., Steen-
huis, T. S., 2003. A soil-water-balance approach to quantifying groundwater
recharge from irrigated cropland in the north china plain. Hydrol. Process.

15

17, 2011–2031.
Kroes, J., van Dam, J., 2003. Reference Manual SWAP version 3.0.3. Alterra,

Green World Research, Wageningen, The Netherlands.
Liu, C., Zhang, X., Zhang, Y., 2002. Determination of daily evaporation

and evapotranspiration of winter wheat and maize by large-scale weighing
lysimeter and micro-lysimeter. Agricultural and Forest Meteorology 111 (2),
109–120.

McDonald, M. G., Harbaugh, W. W., 1988. A modular three-dimensional
finite-difference ground water flow model. Techniques of Water-Resources
Investigations, Book 6. US Geological Survey, Reston, VA, Ch. A1.

Michalewicz, Z., 1996. Genetic Algorithms + Data Structures = Evolution
Programs, 3rd Edition. Springer Verlag.

Poeter, E. P., Hill, M. C., 1998. Documentation of UCODE: A computer code
for universal inverse modeling. Water-Resources Investigations Reports 98-
4080, U.S. Geological Survey.

Prasad, K. L., Rastogi, A. K., 2001. Estimating net aquifer recharge and zonal
hydraulic conductivity values for Mahi Right Bank Canal project area, India
by genetic algorithm. Journal of Hydrology 243, 149–161.

Ritzel, B. J., Eheart, J. W., Ranjithan, S., 1994. Using genetic algorithms
to solve a multiple objective groundwater pollution containment problem.
Water Resources Research 30 (5), 1589–1603.

Spataro, W., D’Ambrosio, D., Rongo, R., Trunfio, G. A., 2004. An evolution-
ary approach for modelling lava flows through cellular automata. In: Sloot,
P. M. A., Chopard, B., Hoekstra, A. G. (Eds.), ACRI. Vol. 3305 of Lecture
Notes in Computer Science. Springer, pp. 725–734.

van Kraalingen, D., Rappoldt, C., 2000. Reference manual of the FORTRAN
utility library TTUTIL v. 4. Plant Research International, Wageningen, The
Netherlands.

Wang, Q. J., 1991. The genetic algorithm and its application to calibrating
conceptual rainfall-runoff models. Water Resources Research 27 (9), 2467–
2471.

Xu, J., Arslan, T., Wang, Q., Wan, D., 2002. An ehw architecture for real-time
gps attitude determination based on parallel genetic algorithm. In: 2002
NASA/DoD Conference on Evolvable Hardware, 15-18 July 2002, Alexan-
dria, VA, USA. Vol. 2002. Los Alamitos, CA, USA : IEEE Comput. Soc,
2002, pp. 133 – 141.

Zheng, C., Wang, P. P., 1999. MT3DMS: Documentation and user’s guide.
Contract report SERDP-99-1, U.S. Army Eng, R&D Center, Vicksburg,
MS.

Zheng, C., Wang, P. P., 2002. A field demonstration of the simulation-
optimization approach for remediation system design. Ground Water 40 (3),
258–265.

Zheng, C., Wang, P. P., May 2003. MGO-A Modular Groundwater Optimizer
Incorporating MODFLOW/MT3DMS. University of Alabama and Ground-
water Systems Research Ltd.

16

